Chapter 7  Some Mathematics: 7.6 Momentum Equation Newton's Second Law relates the change of the momentum of a fluid mass due to an applied force. The change is:
where F is force, m is mass, and v is velocity; and where we have emphasized the need to use the total derivative because we are calculating the force on a particle. We can assume that the mass is constant, and (7.8) can be written:
where f_{m} is force per unit mass. Four forces are important: pressure gradients, Coriolis force, gravity, and friction. Without deriving the form of these forces (the derivations are given in the next section), we can write (7.9) in the following form.
Acceleration equals the negative pressure gradient minus the Coriolis force plus gravity plus other forces. Here g is acceleration of gravity, F_{r} is friction, and Ω is the Rotation Rate of Earth, 2π radians per sidereal day or
Momentum Equation in Cartesian Coordinates:
where F_{i} are the components of any frictional force per unit mass, and φ is latitude. In addition, we have assumed that w << v, so the 2 Ω w cos φ has been dropped from equation in (7.12a). Equation (7.12) appears under various names. Leonhard Euler (17071783) first wrote out the general form for fluid flow with external forces, and the equation is sometimes called the Euler equation or the acceleration equation. Louis Marie Henri Navier (17851836) added the frictional terms, and so the equation is sometimes called the NavierStokes equation. The term 2 Ω u cos φ in (7.12c) is small compared with g, and it can be ignored in ocean dynamics. It cannot be ignored, however, for gravity surveys made with gravimeters on moving ships.
Derivation of Pressure Term
But and therefore
Dividing by the mass of the fluid δm in the box, the acceleration of the fluid in the x direction is:
The pressure forces and the acceleration due to the pressure forces in the y and z directions are derived in the same way. The Coriolis Term in the Momentum Equation
Usually, we just state that the force per unit mass, the acceleration of a parcel of fluid in a rotating system, can be written:
where R is the vector distance from the center of Earth, Ω is the angular velocity vector of Earth, and v is the velocity of the fluid parcel in coordinates fixed to Earth. The term 2Ω × v is the Coriolis force, and the term Ω × Ω × R) is the centrifugal acceleration. The latter term is included in gravity (Figure 7.4). The Gravity Term in the Momentum Equation The gravitational attraction of two masses M_{1} and m is:
where R is the distance between the masses, and G is the gravitational constant. The vector force F_{g} is along the line connecting the two masses. The force per unit mass due to gravity is:
where M_{E} is the mass of Earth. Adding the centrifugal acceleration to (7.15) gives gravity g (Figure 7.4):
Note that gravity does not point toward Earth's center of mass. The centrifugal acceleration causes a plumb bob to point at a small angle to the line directed to Earth's center of mass. As a result, Earth's surface including the ocean's surface is not spherical but it is a prolate ellipsoid. A rotating fluid planet has an equatorial bulge.


Department of Oceanography, Texas A&M University Robert H. Stewart, stewart@ocean.tamu.edu All contents copyright © 2005 Robert H. Stewart, All rights reserved Updated on September 24, 2008 